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A SURVEY OF 'TE3RMAL RADIATION STUDIES OF ABLATING 

BODIES I N  THE BALLISTIC RANGE* 

By W i l l i a m  A. Page 
Ames Research Center 

SUMMARY 

Ames Research Center has studied the  radiative properties of the boundary 
The ab la t -  layer  and near wake of ablat ing bodies f ly ing  i n  b a l l i s t i c  ranges. 

ing materials investigated include polycarbonate, General E lec t r i c  124 resin,  
polyethylene, polyformaldehyde, Teflon, and cel lulose n i t r a t e .  Both absolute 
radiometric and spectrographic data were obtained. The observed absolute 
amount of radiat ion varied grea t ly  f o r  the various materials. 
species responsible f o r  the radiat ion i n  the spec t ra l  range from 0.2 to  1.1 1-1 
were CN, C 2 ,  NH, H, and so l id  carbon microparticles, or soot. The r e su l t s  of 
the tests indicate a strong corre1.ation between the  radiat ing species present 
and the carbon-oxygen r a t i o  of the ablat ing material .  

The chemical 

INTRODUCTION 

For about ten  years, s ign i f icant  research e f f o r t  has been directed 
toward the study of thermal radiat ion emitted by the disturbed flow f i e l d  
about bodies f ly ing  a t  hypervelocities. 
t o  study (1) ent ry  body heating resu l t ing  from radia t ive  emission and absorp- 
t i o n  processes i n  the high-temperature shock layer and boundary-layer gases, 
and (2) op t i ca l  signature of missiles during atmosphere entry. 

Two motivations f o r  this research are 

This paper i s  a survey of some laboratory s tudies  t h a t  have been done 
(refs.  1-4) on t h i s  subject and some that are under way i n  the b a l l i s t i c  
ranges a t  Ames Research Center. Although the  s tudies  are somewhat r e s t r i c t ed  
i n  scope, par t icu lar ly  with respect t o  the materials investigated, it i s  use- 
f u l  t o  gather together the  general features of the  r e s u l t s  and the conclu- 
sions that can be made. The laboratory equipment and instrumentation u t i l i z e d  
w i l l  be described and example resu l t s  w i l l  be shown from studies  of the radia-  
t ive properties of boundary layers on ablat ing bodies and o f  the  near wake of 
ablating bodies. 
(refs. 5-11) w i l l  not be discussed. 
t r a l  in t ens i ty  of the  radiat ing sources at model scale  and t o  the measure- 
ments and calculations t h a t  ident i fy  the  responsible species. 

Radiation from the high-temperature air  i n  the shock layer 
Attention w i l l  be directed t o  the spec- 

SYMBOLS 

d model diameter, ern 

E 

K wake decay coeff ic ient  
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rad ia t ion  in t ens i ty  per u n i t  mass of ablated material, W/g 
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Mach nmiber 

nose radius, em 

spec t ra l  response of radiometer 

temperature, OK 

free -stream velocity,  h / s e c  

spec t r a l  radiat ion in to  4s steradians,  W/p 

distance downstream from model stagnation point,  em 

photographic exposure t i m e ,  psec 

radiometer band pass, p 

wavelength, IJ. 

sea-level reference density 

free-stream density 

APPARATUS, INSTRUMENTATION, AND OPTICAL MEASUREMENT TECHNIQUES 

The experimental data described herein have been obtained i n  several  
b a l l i s t i c  ranges and/or counterflow ranges ( ref .  12) a t  Ames. 
a typ ica l  counterflow range, the p i l o t  hypervelocity f r ee - f l i gh t  f a c i l i t y .  A 
l ight-gas gun ( ref .  l3), u t i l i z i n g  hydrogen as the  propellant gas, launches 
models at  hy-pervelocities in to  a t e s t  section where the  veloci ty  and a t t i t ude  
of the  model are determined and where radiat ion measurements can be made. Gun 
ca l ibers  range from 7 . 1  mm f o r  the p i l o t  f a c i l i t y  t o  38 mm i n  the  la rges t  
Hy-pervelocity Free-Flight Radiation Fac i l i t y .  The f a c i l i t i e s  are su f f i c i en t ly  
long so t h a t  f o r  models made from subliming ablators,  the ablation process 
reaches steady-state conditions, depending somewhat, of course, upon anibient 
gas density. 
and t o  14  km/sec w i t h  the  shock-tube-driven hypersonic counterflow streams i n  
operation. 
alone a t  t yp ica l  ve loc i t ies  from 6 t o  8 km/sec. 

Figure 1 shows 

Velocity up t o  9.0 km/sec can be achieved with the guns alone 

Most of the  r e s u l t s  described herein were obtained with a gun 

Radiation measurements are made by radiometers t ha t  v i e w  the t e s t  a t  
r igh t  angles to  the  f l i g h t  path. Figure 1 shows a typ ica l  system of  narrow- 
band radiometers, consisting of sl i ts ,  op t i ca l  f i l ters ,  and photomultiplier 
tubes. Spectral  coverage of the radiometers i s  shown i n  f igure 2 and extends 
from 0.2 t o  1.1 p, the  wavelength range made available by use of photocathode 
surfaces and f'used s i l i c a  windows. Information has also been collected with 
image -converter cameras and high-speed-shuttered spectrographs t h a t  view the 
model and wake from the  fronk and from the side.  
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The radiometers are cal ibrated i n  absolute u n i t s  by reference t o  a 
tungsten ribbon filament lamp cal ibrated by the NationalBureau of Standards 
(ref.  1 4 ) .  

TYPICAL RESULTS 

Figures 3, 4, and 5 are image-converter photographs of the luminosity 
generated by the shock layer, boundary layer,  and wake of several  models of 
both blunt and slender shapes made of d i f fe ren t  ablating materials. These 
photographs give an idea of the s p a t i a l  d e t a i l  o f  the  luminosity about the 
entry event being simulated i n  the laboratory. The image-converter camera 
u t i l i z e s  an S-11 photocathode; hence, a spec t ra l  region from about 0.35 t o  
0.60 p i s  observed. 
the photographs w i l l  be discussed i n  a later section, Spectrographic Studies. 

The species responsible f o r  the luminosity recorded i n  

Figure 6 shows typ ica l  r e su l t s  obtained by a spec t ra l  radiometer viewing 
the model f l i g h t  over a s l i t t e d  region with a width about as long as the model 
diameter. The f igure shows the var ia t ion with time of the spec t ra l  radiat ive 
in tens i ty  from 0.85 t o  1.03 p f o r  two ablating model materials, polycarbonate 
and polyethylene, and f o r  nonablating aluminum. The i n i t i a l  s ignal  r ise  
represents the  a r r i v a l  of the radiat ing shock layer in to  the f i e l d  of v i e w  of 
the radiometer. For the  ablating materials, the  addi t ional  r i s e  after about 
t = 0.7 psec i s  caused by the radiat ion of  the  boundary layer flowing along 
the model sides. The abrupt decay i s  caused by the  radiat ing shock layer 
moving out of the f i e l d  of view. Finally,  the second peak and f i n a l  decay 
represents radiat ion from the model wake. Note par t icu lar ly  the e f f ec t  of 
model material  on the signal.  The nonablating aluminum model (which had a 
r e l a t ive ly  cool surf ace during these observations) shows no wake radiat ion.  
The s ignal  i s  caused by the radiat ing shock-layer a i r  only, whereas each 
p l a s t i c  material adds t o  t h i s  a d i f fe ren t  i n t ens i ty  level f rom the boundary 
layer and near wake f o r  the  pa r t  of the spectrum being observed. 

BOUNDARY -LAXER RADIATION 

Now, l e t  us tu rn  our a t ten t ion  t o  results of observing the radiat ion 
in tens i ty  of boundary layers on ablating p l a s t i c  models. 
typ ica l  radiometer observations when only the shock layer  and forward face of 
the body are i n  the f i e l d  of view. The observed spec t ra l  radiat ion f o r  four 
p l a s t i c  materials, polycarbonate, General Elec t r ic  124 resin,  polyethylene, 
and polyformaldehyde, i s  plot ted as a function of wavelength. 
n i t r a t e  and Teflon have also been tes ted  with r e su l t s  similar t o  those f o r  
polyformaldehyde . ) Observations of a nonablating aluminum model and r e su l t s  
f rom theore t ica l  predictions (ref.  15) f o r  shock-layer a i r  radiance are also 
shown. Since other  test  r e s u l t s  ( r e f .  1) u t i l i z i n g  spherical  nose models, on 
the one hand, and f l a t  face models, on the other hand, have demonstrated t h a t  
l i t t l e  or none of the rad ia t ion  is  emitted by the model surface, the  radiat ion 
i n  excess of t h a t  from the  aluminum model has been a t t r ibu ted  t o  rad ia t ion  
from ablat ion products, o r  possible react ion species i n  the model boundary 

Figure 7 presents 

(Cellulose 
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layer,  or both. 
(< 1000° K) of the ablat ing p l a s t i c  material. 
est f o r  polycarbonate, with decreasing amounts observed ( i n  order) from GE 124 
r e s in  and polyethylene. The r e s u l t s  from polyformaldehyde, cel lulose n i t r a t e ,  
and Teflon do not d i f f e r  appreciably from those f o r  $he nonablating m d e l .  
Note a l so  t h a t  the excess rad ia t ion  from polycarbonate, GE 124 resin,  and 
polyethylene seems t o  be confined to the v i s ib l e  and infrared portions of the  
spectrum, with the grea tes t  i n t ens i ty  near 0.7 p. 

This conclusion i s  consistent with the known low temperat 
The excess radiat ion i s  grea t -  

Material 

Polycarbonate 
GE 124 r e s i n  
Polyethylene 

It i s  not immediately obvious from these measurements what boundary-layer 
species are  responsible f o r  the radiat ion.  Clearly, the spec t r a l  resolut ion 
i s  insuf f ic ien t .  
empirical cor re la t ion  (ref. 1). It was assumed t h a t  the boundary-layer 
rad ia t ive  in t ens i ty  from 0.45 t o  1.1 p could be described by the r e l a t ion  

Much has been learned about the radiation, however, by 

5 ,  5 ,  5 ,  
k Blunt -body Blunt -body 30° cone 

t e s t s  tests t e s t s  

7x10 -8 0 3.5 +l 3 93 
6~10-~ .66 4( assumed) --- 

.12 4( assumed) 4.3 

( 5  E = kp T , W/g 

where E i s  the rad ia t ion  per un i t  mass of ablated material, k i s  a constant, 
p and T 
and and 5 are  exponents which along with k, can be found by correlat ing 
the experimental data obtained over a range of free-stream dens i t ies  and 
f l i g h t  ve loc i t ies .  The r e s u l t s  obtained by the application of the above equa- 
t ion ,  along with simple boundary-layer theory f o r  the diffusion process of 
ablation species i n  the boundary layer,  a re  shown i n  tab le  1 f o r  three p l a s t i c  
ablat ing materials.  For the blunt-body t e s t s  the free-stream density was 
varied by a f ac to r  of 10, while the boundary-layer-edge temperature ranged 
from ?TOO0 t o  86000 K. Insuf f ic ien t  da t a  were col lected to es t ab l i sh  the 
value of 5 except f o r  polycarbonate; f o r  the  other  two materials, a 6 of 4 
was assumed. The range of environmental conditions has been subs tan t ia l ly  
increased, however, by a se r i e s  of t e s t s  ( r e f .  3) i n  which 30' half-angle- 
cone models were used. 
subs tan t ia l ly  reduced t o  about 3000° K. 
the blunt-body r e s u l t s  when the values of 5 
headed "30° cone t e s t s " )  a re  used. 
temperature exponent has been established t o  well  within 25 percent. 

are  l o c a l  values of density and temperature i n  the boundary layer,  

Here the typ ica l  boundary-layer-edge temperature was  
The cone r e s u l t s  cor re la te  bes t  with 

l i s t e d  i n  tab le  I ( i n  the column 
It appears from these r e su l t s  t h a t  the 

TABLE I. - EMPIRICAL CORRELATIONS OF BOUNDARY-LAYER RADIATION; 

E = kp [ E  T , W/g 
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RADIATION FROM THE NEAR WAKE 

More information has been col lected about the rad ia t ive  propert ies  of 
ablat ion products by studying the rad ia t ion  from the  near wake. 
circumstances, there  i s  a peak i n  wake rad ia t ion  from 3 t o  10 body diameters 
downstream of the body. Figure 8 presents the values of the peak wake spec- 
t r a l  rad ia t ion  in t ens i ty  observed ( r e f .  2) f o r  six model materials f ly ing  at 
a free-stream density r a t i o  of 
the r igh t  side of the f igure)  of about 6 km/sec. 
orders of magnitude var ia t ion  i n  the  rad ia t ion  in tens i ty .  
be contributions from scat tered l i g h t  from the r e l a t i v e l y  much more intense 
shock layer  of the aluminum, polyformaldehyde, and Teflon models, the values 
p lo t ted  f o r  these materials are considered upper l i m i t s  t o  the wake radiat ion.  
The figure shows t h a t  the  brightness ranking of the materials, namely, poly- 
carbonate, followed by GE 124 resin,  polyethylene, and polyfomaldehyde, is 
the same as  that determined f o r  boundary-layer radiat ion.  Hence, a strong 
relat ionship e x i s t s  between rad ia t ion  from the boundary layer  and from the 
near wake. Note pa r t i cu la r ly  t h a t  the infrared rad ia t ion  from polycarbonate 
was as intense as  was noted f o r  the boundary-layer radiat ion.  Results i n  
reference 2 have establ ished t h a t  the peak rad ia t ion  per un i t  volume of the 
near wake var ies  d i r e c t l y  with free-stream density and approximately with the  
seventh power of the velocity.  

Under most 

pm/p = 0.08 and at ve loc i t ies  (noted along 
0 

The graph shows almost three 
Because there  could 

The boundary-layer and near-wake radiat ion i s  compared fu r the r  i n  
f igures  9 and 10, where the spec t ra l  rad ia t ion  in t ens i ty  of the boundary layer  
(x/d = 0) i s  p lo t ted  along with the spec t ra l  rad ia t ion  in t ens i ty  of the wake 
observed a t  d i f fe ren t  distances behind the body. The graphs present r e su l t s  
for three p l a s t i c  materials and for nonablating aluminum, a l l  taken a t  a 
free-stream density r a t i o  of p,/po = 0.08 and a t  nearly the same velocity.  
It i s  seen t h a t  the spec t r a l  qua l i ty  f o r  a given model mater ia l  changes but  
l i t t l e  as  the ablat ion products flow from the boundary layer t o  the wake. 
Even the  apparent change i n  spec t ra l  shape f o r  polyethylene i s  a r e s u l t  of the 
data f o r  x/d = 0 
(The nonablating aluminum data  f o r  x/d = 0 
t ion . )  
ethylene, the spec t r a l  shape will be almost i den t i ca l  t o  t h a t  of the near 
wake. There i s  strong evidence, therefore,  t h a t  f o r  the  conditions of these 
small-scale tests, the ablat ion species causing the  major portion of the  
observed radiat ion do not change ( i . e . ,  undergo chemical reaction) as they 
move downstream from the boundary layer  t o  the wake. 

containing a contribution from shock-layer-air radiat ion.  
are  a measure of this a i r  radia-  

Hence, if  the r e s u l t s  f o r  aluminum are  subtracted from those f o r  poly- 

Other propert ies  of wake rad ia t ion  a re  of i n t e r e s t ;  one i n  par t icu lar ,  i s  
the r a t e  of decay with downstream distance.  Measurements (ref. 2) have shown 
tha t  the decay coef f ic ien t  

i s  insens i t ive  t o  ablation 
ob servat ion, demonstrating 

K, defined by 

material and the portion of the spectrum under 
a square -root dependence upon f r e e  -stream density 
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only. 
40,000 t o  600,000, based upon body diameter. 

This behavior w a s  observed f o r  a free-stream Reynolds number range f r o  

For t h i s  Reynolds number range and f o r  body diameters of about 1 em, the 
value of K varied from 0.056 t o  0.28. Image-converter pictures showed 
turbulent wakes f o r  these conditions. 

SPECTROGRAPHIC STUDIES 

Thus far some of the general radiat ion propert ies  of ablat ion products i n  
the boundary layer and near wake f o r  a group of representative p l a s t i c  mate- 
r ials have been described. The radiometer results have not defined the  abla- 
t i o n  species t h a t  cause the  radiation, but  spectrographic results (ref.  16) 
have pos i t ive ly  ident i f ied  some of the contributors t o  the radiation. Because 
of the d i f f i c u l t y  i n  obtaining su f f i c i en t  radiat ive in tens i ty  f o r  adequate 
spectrographic exposures, it w a s  necessary t o  increase model ve loc i t ies  from 
near 6 km/sec (where most of the radiometer da ta  were obtained) t o  8 km/sec. 
This higher veloci ty  resul ted i n  one noticeable difference which w i l l  be 
d i s cu s s e d sub sequent 1y. 

The input s l i t  of an f6.3 Jarrel-Ash spectrograph was  op t i ca l ly  imaged i n  
the center o f  the tes t  section along the model f l i g h t  path. 
shut ter  terminated the exposure about 50 psec (about 40 model diameters) after 
the model passed the measurement s ta t ion .  Phototube monitors were used t o  
assure tha t  no extraneous rad ia t ion  from the  gun b l a s t  entered the 
spectrograph, 

An explosive 

A t yp ica l  s e t  of r e su l t s  (ref.  16) for two p l a s t i c  materials, covering 
the spec t ra l  range from 0.25 t o  0.80 p (with a resolution of about 1 A )  i n  
three exposures, i s  shown i n  f igure  11. The species are ident i f ied  and t h e i r  
spec t ra l  locations are  shown on the f igure.  The spec t ra l  l i nes  reaching com- 
p l e t e ly  across the photographic images are Mercury l i nes  used for wavelength 
cal ibrat ion.  The same species, CNdolet, C 2  swan, NH, and H, are present i n  
the ablat ion products of polycarbonate and polyethylene, but are of greater  
in tens i ty  with polycarbonate. It should be remarked tha t  nei ther  the CNred 
system nor, f o r  t h a t  matter, any other discernible l i ne  or band s t ruc ture  
(excepting 
cont iamn can be found i n  the infrared portion of the  spectrum i n  the  poly- 
carbonate exposure t o  correspond t o  the intense infrared radiat ion seen by the 
radiometers. This r e s u l t  i s  not surprising, since not only are spectrographs 
insensi t ive t o  continuum radiation, but  the combination of spectrograph and 
infrared f i lmbe ing  used here i s  approximately 50 t i m e s  less sensi t ive i n  the 
infrared than the  spectrograph and f i l m  combination used i n  the  u l t r av io l e t  
portion of the  spectrum. 

Ha), i s  evident i n  the  infrared. Only the f a i n t e s t  evidence of a 

A comparison of the spectrograph with the  radiometer data shown on 
f igures  9 and 10, along with the spec t ra l  response of the individual radiom- 
e t e r s  ( f i g .  2) ,  explains some of the bumps i n  the radiometer records. It i s  
reasonable t o  assume that the C2 swan band system causes increased radiom- 
eter outpgt a t  0.52 1-1 i n  f igure  g ( a ) .  (The e f f e c t  of the other  strong 
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G2 Swan 
re l a t ive  response of the radiometer centered a t  0.455 p.) 
lous r e s u l t  t h a t  the  output of the radiometer centered a t  0.37 p i s  not 
enhanced because of the  
e f f ec t  of increased veloci ty  documented i n  the radiometric data (ref.  2), but 
not presented here. 
spec t ra l  radiance f o r  the radiometer centered a t  0.37 p when veloci ty  i s  
increased above 6 to  7 km/sec. 

band head, a t  0.47 p, i s  suppressed by almost a fac tor  of  3 by the  
The somewhat anoma- 

C N d o b t  band system i s  explained i n  part by the  

The data of reference 2 show subs tan t ia l ly  increased 

We must conclude, therefore, t h a t  while the  present spectrographic 
r e su l t s  from the  b a l l i s t i c  range ident i fy  some of the carbon-bearing ablation 
species, they provide only f a i n t  evidence of a continuum source t o  account f o r  
the most intense feature  of the low-resolution radiometer r e su l t s .  Reasonably 
posi t ive ident i f ica t ion  of the cause of the  infrared radiation, namely, so l id  
carbon rnicroparticles, or soot, has come from both spectrographic r e s u l t s  and 
other observations and calculations described below. 

Spectrographic observations ( ref .  16) of a diffusion flame burning i n  air  
containing the vaporized products driven from samples of polycarbonate and 
polyethylene (heated i n  a r e t o r t  over a hotplate) show intense continuum radi- 
a t ion i n  the infrared.  Furthermore, the flame soots extensively. In t e re s t -  
ingly, under a microscope the soot pa r t i c l e s  (col lected by placing a cold 
glass  microscope s l ide  over the flame) showed almost an exact inverse depen- 
dence between the number of pa r t i c l e s  of  a given s ize  present and the square 
of the apparent p a r t i c l e  diameter. This ru le  applied from maximum diameters 
of 50 p down t o  the smallest pa r t i c l e s  op t i ca l ly  observable, -0.3-p diam- 
e t e r .  Hence, most of the pa r t i c l e s  col lected on the microscope s l i d e  are 
small, but  most of the  mass col lected i s  i n  large pa r t i c l e s .  
scope observations of soot samples col lected by the  same technique from di f fu-  
sion flames o f  other  f u e l s  a re  described i n  reference 1.7, where it i s  s ta ted  
t h a t  the average p a r t i c l e  diameters varied from 0 . 0 1 t o  0.2 p, No remarks are 
made about d i s t r ibu t ion  of p a r t i c l e  s izes  beyond t h i s  range. Hence, it i s  
l ikely,  but not cer ta in ,  t h a t  the p a r t i c l e  sizes from the present flames 
d i f f e r  from those reported i n  reference 17. 

Electron micro- 

Shadowgraph pictures  of polycarbonate and polyethylene models f ly ing  i n  
the  b a l l i s t i c  range show p a r t i a l l y  opaque wakes. 
do not seem t o  radiate  i n  the  infrared show c lear  wakes. Examples of such 
shadowgraphs are given i n  figure 12. Since the spark l i g h t  with which the 
shadowgraph i s  obtained has an e f fec t ive  source temperature above 15,000° K, 
the so l id  carbon microparticles are believed t o  cause the opacity i n  the  
polyethylene model wake. 

Shadowgraphs o f  models which 

Ablation tests of polycarbonate i n  a rc- je t  f a c i l i t i e s  a t  Ames and other 
laborator ies  have shown carbon deposits, "black carbonaceous t endr i l s  and 
filaments, " ( ref .  18) downstream of the  model. 

Calculations were performed t o  estimate the  absolute spec t ra l  radiat ion 
t h a t  might be observed from the model boundary layer due t o  the presence of 
so l id  carbon microparticles. The following assumptions were made: (a) A l l  
carbon i n  the ablat ing products i s  i n  the form of microparticles, with diam- 
eters less than the wavelength of peak spec t ra l  emission, an assumption 



conforming t o  reported measurements i n  diffbsion flames ( r e f .  17). 
ext inct ion coef f ic ien t  i s  given by a simplified expression a r i s ing  from the  
work of S idda l l  and McGrath (ref. l9),  where it i s  shown, contrary t o  most 
reported work, t h a t  the  ext inct ion coef f ic ien t  f o r  small p a r t i c l e s  i s  indepen- 
en t  of p a r t i c l e  s ize ;  the coef f ic ien t  depends only upon wavelength and mate- 
r i a l  concentration per uni t  volume of radiat ing flame. (c )  The boundary layer 
i s  op t i ca l ly  th in .  (d) The mole f r ac t ion  of microparticles i s  independent of 
distance from the w a l l  u n t i l  the  sublimation temperature of carbon is  reached, 
at  which time the microparticles disappear. 
the boundary layer  i s  l inear  s t a r t i n g  with 1000° K at  the  w a l l .  
sublimation temperature of carbon depends on pressure and composition (ref. 20). 
A sublimation temperature of 4000O K was chosen f o r  the conditions of the 
example calculation, where the shock-layer pressure i s  80 atmospheres. 

(b) The c 

(e) Temperature d i s t r ibu t ion  i n  
( f )  The 

P l a s t i c  

The calculat ion was made f o r  the boundary layer  on a polycarbonate model 
with a diameter of 0.71 cm, a nose radius equal t o  0.51 em, p,/po = 0.19, and 
V, = 5.97 km/sec and the r e s u l t s  are compared i n  f igure 1-3 with t e s t  results. 
Although the calculat ion i s  ra ther  crude, it does demonstrate remarkable 
agreement i n  in t ens i ty  to the t e s t  results and about the same re l a t ive  spec- 
t ra l  d is t r ibu t ion  of radiat ion.  It should be remarked t h a t  a calculat ion 
based upon microparticles la rger  than the wavelength of emission would lead 
to spec t r a l  i n t e n s i t i e s  somewhat lower than those determined above, but with 
l i t t l e  change i n  spec t r a l  d i s t r ibu t ion .  

a Element r a t i o s  
Formula Species ob served 

C/H c/o 

From a l l  the evidence presented above, it i s  concluded t h a t  so l id  carbon 
microparticles a re  an important source of the infrared continuum i n  the bound- 
ary layer  and wake of the models. 
present i n  the wakes of polycarbonate models has a lso been reported ( r e f s .  21  
and 22).  

The p o s s i b i l i t y  t h a t  carbon p a r t i c l e s  are  

I 

The species t h a t  cause observable rad ia t ion  from the ablation products 
i n  both the boundary layer  and near wake are summarized i n  tab le  I1 along 
with the  formula and element r a t i o s  of carbon to hydrogen, and carbon t o  
oxygen of the p l a s t i c s  investigated.  (The comparative i n t e n s i t i e s  l i s t e d  a re  
representative of conditions near 6 km/sec.) 

I 

TABLE 11.- FORMULA, ELEMENT RATIOS, AND SPECIES OBSEFtVED 
FOR ABLATING PLASTICS 

Polycarbonate 

Po lye thylene 
Po lyformaldehyde 
Cellulose n i t r a t e  

GE 124 r e s in  
C16H1403 1 14  5.3 Soots, C2S' CNW, EJH, H 

CH2 95 co SootW, '2Ml CNS, H 

C6Ht$& .75 67 

wC10H1303 - 77 3.3 soo$, c2w, CNM 

CH20 - 5  1 H 
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T-$e e f f ec t  of 
products a re  readi ly  apparent and somewhat anticipated.  
p.  189, where caxbon formation i n  diffusion flames i s  discussed i n  great  
d e t a i l .  ) 
lose  ni t ra te) ,  soot formation i s  t o t a l l y  suppressed. 
polycarbonate and GE 124 r e s i n  show t h a t  increasing the 
more carbon t o  be formed. The r e s u l t s  from the polyethylene t e s t  imply t h a t  a 
high hydrogen concentration suppresses soot formation. 
e f f e c t  of C/O 
take in to  account the air  species i n  the  boundmy layer  and wake t h a t  are  
mixed intimately with the  ablat ion species.  

C/O r a t i o  and i t s  influence on soot formation i n  the ablat ion 
(See, e.g., r e f .  17, 

When su f f i c i en t  oxygen is present (i .e , polyformaldehyde and ce l lu-  
The observations of 

C/O r a t i o  allows 

When considering the 
r a t i o  on the species formed, it i s  c l ea r ly  important a l so  t o  

A f i n a l  remark should be made about the  value of the temperature exponent, 
5 ,  determined from the empirical  study of rad ia t ion  from the  boundary layer  
(reviewed i n  an e a r l i e r  sect ion of t h i s  survey). The following argument has 
ramifications as  t o  the mechanism of formation of carbon microparticles from 
the ablat ion material .  The temperature dependence of the radiance f o r  mate- 
r i a l  i n  the boundary layer  i s  nearly 4. The c l a s s i c a l  Mie theory of absorp- 
t i o n  and sca t te r ing  (ref. 23) of rad ia t ion  by small so l id  p a r t i c l e s  predicts  
nearly a A - 1  wavelength dependence of the ext inct ion coef f ic ien t  f o r  par- 
t i c l e s  smaller than the wavelength and generally an ext inct ion coef f ic ien t  
independent of wavelength f o r  p a r t i c l e s  la rger  than the  wavelength. Hence, 
one would expect a T5 dependence f o r  rad ia t ion  emitted by small pa r t i c l e s  
and a T4 dependence f o r  large p a r t i c l e s .  This r e s u l t  suggests t h a t  large 
pa r t i c l e s  e x i s t  i n  the boundary layer.  There i s  also a poss ib i l i t y  t h a t  the 
ablat ion process for the high shock-layer pressure and convective heating load 
conditions of these small scale  t e s t s  consis ts  pr inc ipa l ly  of the spa l la t ion  
o r  shearing of pa r t i c l e s  from the ablat ing surface (from thermal shock?) which 
probably break up, vaporize, and char as they move downstream i n  the boundary 
layer  and wake flow. 

The arguments and conclusions i n  the above paragraph must s t i l l  be 
t rea ted  as somewhat t en ta t ive  pending fu r the r  developments i n  both experiment 
and theory. 

CONCLUDING REMARKS 

Although only a few ablat ion materials have been studied thus far, it i s  
c l ea r  t h a t  the  radiance of boundary layers  and near wakes depends c r i t i c a l l y  
upon the chemistry of the  ablat ion mater ia l  t o  the extent t h a t  the wake does 
not rad ia te  measurably (as i s  the case f o r  the present experimental conditions) 
i n  the  absence of ablat ion products. With ablation, radiat ion from the bound- 
ary layer  and a l l  s t a t ions  of the  wake have similar spectra.  Since only 
simple carbon-bearing species have thus far been observed, there  i s  no evi-  
dence that the polymer s t ruc ture  of the ablat ion mater ia l  (as contrasted t o  
the  atomic element r a t i o s )  influences the observed radiat ion.  

The observed rad ia t ion  indicates  tha t :  (a) Materials with a high carbon- 
oxygen, C/O, r a t i o  rad ia te  subs tan t ia l ly  more than those with a low 
r a t i o .  (b) Materials with high C/O r a t i o s  exhibi t  s ign i f icant  amounts of 
infrared rad ia t ion  caused by so l id  carbon microparticles or soot. 
ab la t ionproduct  rad ia tors  i den t i f i ed  are CNviolet, C, swan, NH, and H. 

C/O 

(e )  Other 

9 
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(d) The temperature dependence of the infrared radiat ion (which implies thatf' 
i n  the boundary layer the carbon microparticles are large compared to  the  
wavelength of peak spec t r a l  emission) has ramifications with respect t o  the  
ablat ion process under high shock-layer pressures and high convective heating 
l o  ads. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, C a l i f  ., Nov. 1, 1966 
129-01-08 -16-21 
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Figure 1. - Schematic drawing of  P i l o t  Bypervelocity Free-Flight Fac i l i ty .  
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Figure 2.- Sketch of radiometer f i e l d  of v i e w  aad responsivit ies.  



Figure 3. - Self-luminous photograph of ablating polycarbonate model. 

Figure 4. - Self -luminous photograph of ablat ing polycarbonate model; 
head-on view. 
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Figure 5.- Self-luminous photograph of ablat ing Teflon round-nosed cone; 
V, = 5.9 km/sec, A t  = 0 .5  ysec. 
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Figure 6.  - Variation of infrared radiat ion with model material. 
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Figure 7.- Radiometric data; p,/p = 0.08, V, = 6 km/sec. 
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Figure 8.-  Peak wake spec t ra l  radiat ion,  p,/p, = 0.08. 
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Figure 9. - Decay of wake radiance, p,/po = 0.08. 
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Figure 10.- Decay of wake radiance, p,/po = 0.08. 



TEST CONDITIONS: Va=8km/sec /&/Po =0.1 
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Figure 11. - Spectra of shock layer and near wake. 

Figure 12. - Shadowgraphs of models i n  f l i g h t ;  palpo = 0.08, V, = 6.3 km/sec. 
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Figure 13. - Radiation from boundary layer  of ablating polycarbonate model. 
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